Positive storm effects in the dayside polar ionospheric F-region observed by EISCAT and ESR during the magnetic storm

نویسندگان

  • S. Y. Ma
  • H. T. Cai
  • H. X. Liu
چکیده

EISCAT/ESR radar data and in situ FAST and POLAR satellite observations are coordinately analyzed to investigate positive ionospheric storm effects in the dayside upper F-region in both the polar cap and the auroral oval during the magnetic storm of 15 May 1997. An ionization enhancement, lasting for about 2.5 h, appeared first over the EISCAT site around magnetic noon; about one hour later, a similar ionization enhancement was also seen over ESR. During the concerned time period ion energy spectra measured on board FAST show clearly continuous energy-latitude dispersion when the satellite passed by over the EISCAT latitude. This implies that EISCAT was located under the polar cusp region which was highly active, and expanded greatly equatorwards due to magnetopause reconnections during longlasting southward IMF. Simultaneously, soft particles of the magnetosheath precipitated into the F-region ionosphere and caused the positive storm effects over EISCAT. The coincident increase in electron temperature at EISCAT gives additional evidence for soft particle precipitation. Consistently, POLAR UV images show strong dayside aurora extending to as low as 62 N magnetic latitude. The ionization enhancement over ESR, however, seems not to be caused by local particle precipitation, evidenced by a lack of enhanced electron temperature. The observed plasma convection velocity and data-fitted convection patterns by AMIE suggested that it is likely to be a polar patch originating from the cusp region and traveling to the ESR site.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dayside midlatitude ionospheric response to storm time electric fields: A case study for 7 September 2002

[1] With the storm of 7–8 September 2002 as a study case, we demonstrate that an ionospheric model driven by a suitable storm time convection electric field can reproduce the F region dayside density enhancements associated with the ionospheric storm positive phase. The ionospheric model in this case is the Utah State University Time Dependent Ionospheric Model (TDIM); the electric field model ...

متن کامل

Velocity shear-related ion upflow in the low-altitude ionosphere

Strong ion upflows with field-aligned velocity above 1000 ms−1 were observed by the European Incoherent Scatter (EISCAT) UHF Radar at Tromsø, Norway in the dayside auroral region at heights between 500–600 km during the 15 May 1997 magnetic storm. Both the EISCAT observations and the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) simulation results show that this event occurred in a...

متن کامل

Electromagnetic energy deposition rate in the polar upper thermosphere derived from the EISCAT Svalbard radar and CUTLASS Finland radar observations

From simultaneous observations of the European incoherent scatter Svalbard radar (ESR) and the Cooperative UK Twin Located Auroral Sounding System (CUTLASS) Finland radar on 9 March 1999, we have derived the height distributions of the thermospheric heating rate at the F region height in association with electromagnetic energy inputs into the dayside polar cap/cusp region. The ESR and CUTLASS r...

متن کامل

Investigation of the effects of geomagnetic storms on ionospheric irregularities using the combination of ground-based GNSS and SWARM satellites

Geomagnetic storms are one of the main causes of ionospheric perturbations in different sizes, depending on their intensity, which could disturb radio signals passing through this medium. On September 6-12, 2017, the sudden storm commencement (SSC) was the most massive geomagnetic storm of the year due to the X9 solar flare caused by a coronal mass ejection (CME). IMF-Bz and Dst values increase...

متن کامل

The Southern Hemisphere and equatorial region ionization response for a 22 September 1999 severe magnetic storm

The ionospheric storm evolution process was monitored during the 22 September 1999 magnetic storm over the Australian eastern region, through measurements of the ionospheric Total Electron Content (TEC) from seven Global Positioning Systems (GPS) stations. The spatial and temporal variations of the ionosphere were analysed as a time series of TEC maps. Results of our analysis show that the main...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002